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Abstract

Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If
training could enhance change detection performance in general, then it might help to remedy some real-world
consequences of change blindness (e.g. failing to detect hazards while driving). We examined whether adaptive training on
a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults.
Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained
objects following training. However, neither group showed differential improvement on untrained change detection tasks
when compared to active control groups. Change detection training led to improvements on the trained task but did not
generalize to other change detection tasks.
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Introduction

People often fail to detect changes to objects and scenes when

the localizable signal produced by a change is masked or disrupted

[1,2]. Given that such ‘‘change blindness’’ affects performance in

real-world tasks such as driving [3], improving the ability to detect

changes could have practical benefits.

Evidence that change detection is amenable to learning comes

from findings that expertise is associated with improved detection

of domain-relevant changes. Football experts, for example, are

better than non-experts at detecting changes to football images in

a flicker change detection task [4]. Similarly, veterinary medicine

students outperform undergraduates at detecting changes to

radiograph images [5,6]. This expert advantage disappears for

images outside the observer’s area of expertise [4,5], suggesting

that experts are no better at change detection in general–they are

just more familiar with the stimuli in their domain of expertise.

These group differences appear to be driven by domain-specific

knowledge, implying a potential role of learning in change

detection performance. They do not rule out the possibility,

however, that the effects of expertise derive from more basic

cognitive differences that are amenable to training.

In general, the benefits of perceptual training are specific to the

trained task; training improves trained-task performance, but does

not transfer to untrained tasks [7]. For example, observers trained

to identify briefly presented objects showed no performance

benefits for untrained objects [8]. Similar specificity of training has

been shown in motion discrimination [9], orientation discrimina-

tion [10,11], pop-out detection [12], and vernier acuity [13].

Training also tends to have limited transfer for higher-level

cognitive functions including working memory [14,15], speed of

processing [16], visual search [17,18], and multi-task performance

([19], but see [20, 21, & 22]). A recent study, however, showed

that adaptive working memory training improved the change

detection performance of dysphoric individuals [23], which

suggests that the general ability to detect changes might be

amenable to training. We might therefore expect that training to

detect changes on one task might improve change detection on

other tasks.

In the current work, we examined whether observers could be

trained to detect changes more efficiently, and if so, whether their

learning would transfer to other, untrained change detection tasks.

Transfer tends to be limited when participants learn to recognize

individual objects [8]. Change detection, however, imposes

processing demands on working memory beyond those on object

recognition. Our training task therefore employed displays with

multiple objects (3 and 5), increasing the need to efficiently

consolidate information into visual working memory [24,25]. This

allowed us to explore whether the ability to extract and consolidate

information from multi-object displays is trainable. Furthermore,

participants trained on a large number of objects of four different

types. We predicted that training on a broad array of diverse

objects was more likely to engender transfer to untrained stimuli.

A central component of change detection performance is the

ability to encode the pre-change display, so we adaptively trained

observers to encode the initial display faster while preserving their

accuracy. Presumably, faster encoding should improve change

detection by allowing participants to transfer pre-change informa-

tion into working memory more efficiently. If improved encoding

enhances change detection performance more generally, that

acquired skill should transfer to untrained change detection tasks.

Alternatively, if training increases familiarity with the trained

objects but does not improve change detection ability, then

performance gains should be limited to the trained stimuli. We

tested transfer to a similar one-shot change detection task. This
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task was structurally similar to the training task, but the training

objects were replaced with novel colored bars. We also tested

transfer to a flicker change detection task with images of real-world

driving scenes. The flicker paradigm was structurally dissimilar to

the training task, and the images contained considerably more

detail and clutter than did the arrays of objects, making the flicker

task a measure of broader transfer.

Given that older adults typically demonstrate greater change

blindness than younger adults [26], older adults should have more

room for improvement. Consequently, older adults could benefit

more than younger adults from a training regimen that focuses on

improving encoding efficiency. Furthermore, our training task

focused specifically on improving encoding. Age-related visual

short-term memory impairments result in part from inefficient

encoding [27,28] which appears to reflect age differences in

inhibitory control [29]. We included younger and older adult

groups to compare age effects in training and transfer. Specifically,

we predicted that increasing encoding efficiency might be more

beneficial for older adults.

Method

Participants
40 young adults (mean age = 21.3, SD = 2.3; range = 18–28)

and 40 independent-living older adults (mean age = 75.4,

SD = 4.3; range = 65–84) were recruited from the Urbana-

Champaign community, and were paid $10 per hour. Participants

provided written consent by signing a consent form. The

University of Illinois Institutional Review Board approved this

procedure. All participants demonstrated normal or corrected-to-

normal visual acuity (20/30 cutoff) and color vision (Ishihara

Color Vision Test), and all older participants scored above 27 (out

of 30) on the Mini-Mental State Exam.

Apparatus
Five PC’s with 19-inch screens were used for the training and

the flicker change detection transfer tasks. An Apple eMac with a

17-inch monitor was used for the one-shot change detection

transfer task. The change detection training program was created

using MATLABH software (MathWorksTM). Transfer tasks were

programmed using E-primeH (Psychology Software Tools) and

Vision Shell. Viewing distance for all tasks was approximately

77cm, although participants were free to move their heads.

Training Programs
Participants in the Change Detection training group (20 young,

20 old) practiced an adaptive change detection task (Figure 1). On

each trial, participants first saw a fixation cross, followed by an

original display of 3 or 5 objects, and then by a 500 ms black and

white mask. Following the mask, participants saw a modified

display in which one object (target) from the original image was

replaced by a novel object. Participants used the mouse to select

the changed object. The modified display remained visible until

they responded.

The training stimuli comprised forty exemplars in each of 4

object categories (cars, signs, shapes, letters). Participants trained

on one category of objects in each session. On each trial, the target

object (i.e. the object that changed) was selected randomly from

the 40 objects in the category, under the constraint that each

object was selected as the target 10 times per session. The

distracter items for each trial (i.e. those that did not change) were

chosen randomly from the remaining objects. Participants trained

4 times on each object category, for a total of 16 training sessions.

The order of object categories across sessions was counterbalanced

between participants.

Accuracy at each set size in each session was thresholded at

75%; that is, the presentation duration (i.e. encoding time) of the

original display on each trial was shortened or lengthened

adaptively, using the Quest algorithm [30], to maintain 75%

accuracy. The initial presentation durations for each set size were

derived through pilot testing (Younger adults: set size 3 = 280 ms,

set size 5 = 2012 ms; older adults: set size 3 = 413 ms, set size

5 = 2678 ms), and were the same for each session. Participants

completed 200 trials of set size 3 intermixed with 200 trials of set

size 5 in each hour-long training session.

Participants in the control group (20 young, 20 old) played 16

hours of computer card games (Hoyle Card Games, Encore

Software, Inc. 2008).

Transfer Tasks
One-shot change detection [31]. Participants determined

whether two briefly presented displays differed (Figure 2). They

first saw a briefly presented (100 ms) display containing 2, 4, or 6

colored bars that were individually randomly assigned one of four

orientations (vertical, horizontal, tilted left, tilted right). That

display was followed by a 900 ms blank display, which was then

followed by a test display. On 50% of the trials, an item with a

different color or orientation replaced one item in the original

display. Participants had up to 30 seconds to indicate by key press

whether the two displays were the same or different, and each trial

ended when they responded. Participants completed 24 practice

trials followed by 144 test trials. The location and orientation of

the bars varied randomly on each trial in both the pre- and post-

training sessions. This one-shot transfer task represents relatively

near transfer from the training task in that this task is structurally

similar to the training task, but with different timing and simpler

objects.

Flicker change detection [26]. Participants performed a

flicker change detection task with 80 pairs of photographs of

driving scenes taken from the driver’s perspective (Figure 3). Each

pair of images differed in one detail. Differences included color

and location changes to existing objects and the removal/addition

of one object (e.g. a car was present in one image and was absent

in the other image). On each trial, participants saw a repeating

cycle of 4 images: the original image for 240 ms, a gray mask

screen (80 ms), the modified image (240 ms), and another gray

mask screen (80 ms). Participants pressed a key when they

detected the change. One of the two images was then presented

on the screen, and the participant selected the change location

with the mouse. If the participant did not respond, the trial ended

after 30 s. The set of 80 image pairs was divided into two sets of 40

pairs and participants were tested on one subset prior to training

and the other subset following training, with order counterbal-

anced across subjects. Before completing the experimental trials,

participants completed one practice trial with images not from the

set of 40 image pairs.

Procedure
Following a screening session, participants completed pre-

training assessments on both transfer tasks, and were then

randomly assigned to either the change detection training group

or the active control group. They then completed 16 one-hour

training sessions, followed by a post-training transfer session.

Participants completed 2–3 sessions per week and finished the

study in approximately 8–9 weeks.

Change Detection Training
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Results

Training Improvement
We assessed whether training on the adaptive change detection

task improved trained-task performance by testing for improve-

ments in encoding speed and accuracy. Analyses compared

performance in the first and last session using an ANOVA with

age (Young vs. Old) as a between-subject factor and session (1 vs.

16) and set size (3 vs. 5) as within-subject factors.

Encoding speed. During training, the display duration was

adjusted dynamically to maintain 75% accuracy. Shorter display

durations indicate faster encoding of the initial display. Thus, we

used the presentation duration of the final successful trials of set

size 3 and 5 within each session as a measure of the speed of

encoding (see Figure 4). Overall, participants were faster at set size

3 than at set size 5 [F(1, 38) = 37.2, p,.001, g2
p = .50]. Young

adults achieved shorter presentation durations than did older

adults at both set size 3 [F(1, 38) = 37.2, p,.001, g2
p = .50] and set

size 5 [F(1, 38) = 8.3, p = .006, g2
p = .18]. To analyze performance

over the course of training, we compared final presentation

durations from the first training session (session 1) and the last

training session (session 16). With practice, the duration should

decrease, indicating faster encoding of the initial display.

Participants improved over the course of training, achieving

shorter presentation durations in session 16 than in session 1 for

both set size 3 [F(1, 38) = 17.8, p,.001, g2
p = .32] and set size 5

[F(1, 38) = 12.8, p = .001, g2
p = .25]. Younger and older adults

showed similar reductions in encoding time for set size 3 (15% for

younger adults and 23% for older adults; [F(1, 38) = .29, p = .60,

g2
p = .01]) and for set size 5 (9% for younger adults and 5% for

older adults; [F(1, 38) = .62, p = .53, g2
p = .01]). Both age groups

improved more for set size 3 than for set size 5, [F(1, 38) = 10.93,

p = .002, g2
p = .22], likely as a result of the choice of initial

presentation duration for each set size, which may have modulated

the room for improvement at each set size. Neither the age by

session interaction, [F(1, 38) = .39, p = .52, g2
p = .01], nor the

interaction between age, session, and set size, [F(1, 38) = .39,

p = .54, g2
p = .01], was significant.

Accuracy. Although we used the Quest algorithm to select

presentations durations that would maintain 75% accuracy,

participants achieved slightly higher accuracies due to the limited

number of trials in each session. Accuracy improved between

session 1 (80.3%) and session 16 (83.5%), [F(1, 38) = 9.78, p = .003,

g2
p = .21], and this improvement was greater for set size 5 than for

set size 3, [F(1, 38) = 6.73, p = .013, g2
p = .15]. The main effect of

age, [F(1, 38) = .38, p = .54, g2
p = .01], and age by session

interaction, [F(1, 38) = 1.83, p = .18, g2
p = .05], were not signif-

Figure 1. Change detection training task. Stimuli and sequence of events comprising each trial in the change detection training task.
doi:10.1371/journal.pone.0067781.g001

Figure 2. One-shot change detection task. Stimuli and sequence
of events comprising one trial in the one-shot transfer task.
doi:10.1371/journal.pone.0067781.g002

Change Detection Training
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Figure 3. Flicker change detection task. Stimuli and sequence of events for one trial in the flicker change detection transfer task.
doi:10.1371/journal.pone.0067781.g003

Figure 4. Training improvement. Final presentation duration, in milliseconds, for set size 3 (A) and 5 (B) over the course of training for the young
and old change detection training groups. Error bars represent 95% within-subjects confidence intervals [37,38].
doi:10.1371/journal.pone.0067781.g004

Change Detection Training
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icant. However, older adults did improve more than younger

adults at set size 5 [F(1, 38) = 4.58, p = .04, g2
p = .11].

Transfer Task Performance
If training on a change detection task improves change

detection performance in general, we should expect transfer from

the trained task to other change detection tasks. The One-Shot

Change Detection transfer task is structurally similar to our

training task, so if we successfully trained the underlying process of

change detection, we should be most likely to see transfer to that

task. The Flicker Change Detection task uses richer displays and

an ongoing search for changes, so it constituted a test of somewhat

broader transfer. In addition to the traditional hypothesis tests, we

also report pBIC(H1|D) [32,33] for the interactions gauging

transfer of training. This statistic provides an estimate of the

posterior probability of the alternative hypothesis given the

observed data, allowing conclusions either against or in favor of

the null hypothesis. A value of pBIC(H1|D) less than.5 favors the

null hypothesis of no transfer, and a value greater than.5 favors the

alternative of transfer.

One-shot change detection. In the One-Shot task, the

percent correct for each set size was used to derive 75% accuracy

thresholds (i.e. the estimated set size required to yield 75%

accuracy) for each group at the pre- and post-training testing

sessions (Figure 5). These results were entered into an ANOVA

with session as a within-subjects factor and training group (training

vs. control) and age (young vs. old) as between-subjects factors.

Thresholds increased with practice, [F(1, 76) = 15.6, p,.001,

g2
p = .17], but, importantly, the training group did not show

larger threshold improvement than did the control group, [F(1,

76) = .69, p = .69, g2
p = .009, pBIC(H1|D) = .16]. An analysis of

statistical power revealed that the probability of detecting a small,

medium and large effect size (g2 = .01,.06,.14) for the group by

session interaction was.48,.99, and.99, respectively. The estimated

Bayesian posterior probability for the group by session interaction

was low, suggesting that the data accord better with the null

hypothesis. Averaging across sessions, younger adults had larger

thresholds than did older adults, [F(1, 76) = 43.7, p,.001,

g2
p = .37].

To examine whether participants who improved more during

training showed greater transfer to the One-Shot task, we

performed a median split based on percent reduction in final

training duration (separately for each age group) and ran an

ANOVA with training improvement (high vs. low) as a between-

subjects factor and session as a within-subjects factor. Training

improvement did not interact significantly with One-Shot task

improvement, [F(1, 38) = .90, p = .35, g2
p = .02], indicating that

greater improvements during training did not lead to greater

transfer of training.

Flicker change detection task. Change detection perfor-

mance was defined as the time to accurately detect the change in

each display (Figure 6). Time-outs and incorrect responses were

excluded from analysis. For all analyses, we ran ANOVAs with

session (Pre- vs. Post-training) as a within-subjects factor and age

(Young vs. Old) and training group (training vs. control) as

between-subjects factors. Participants were faster in the post-

training session (7.7 s) than in the pre-training session (8.4 s), [F(1,

76) = 5.1, p = .03, g2
p = .06]. Critically, there was no additional

benefit of change detection training, indicated by the lack of a

group by session interaction [F(1, 76) = .05, p = .83, g2
p = .001,

pBIC(H1|D) = .14]. An analysis of statistical power revealed that

the probability of detecting a small, medium and large effect size

(g2 = .01,.06,.14) for the group by session interaction was.22,.98,

and.99, respectively. The estimated Bayesian posterior probability

for the group by session interaction was low, suggesting that the

data were better fit by the null hypothesis. Change detection

training thus did not transfer to another change detection task that

used richer displays and an ongoing search for changes; the faster

performance on the post-test likely resulted from practice with the

flicker task during the pre-test.

Overall, young adults (6.4 s) were faster to detect changes than

were older adults (9.7 s), [F(1, 76) = 119.8, p,.001, g2
p = .61].

Older adults improved more on the Flicker Change Detection task

Figure 5. One-shot change detection transfer task. 75% accuracy
thresholds on the one-shot change detection task, for each group pre-
and post-training. CD refers to the change detection training groups.
Error bars represent 95% within-subjects confidence intervals [37,38].
doi:10.1371/journal.pone.0067781.g005

Figure 6. Flicker change detection transfer task. Response time,
in seconds, to detect changes on the flicker change detection task for
each group pre- and post-training. CD refers to the change detection
training groups. Error bars represent 95% within-subjects confidence
intervals [37,38].
doi:10.1371/journal.pone.0067781.g006

Change Detection Training
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than did young adults, as indicated by a significant age by session

interaction [F(1, 76) = 4.9, p = .03, g2
p = .06].

We also examined whether the participants who showed greater

training improvement were more likely to display transfer, using

separate ANOVA for each age group with training improvement

(high vs. low) as a between-subjects factor and session as a within-

subjects factor. Training improvement (high vs. low), did not

interact significantly with Flicker Change Detection improvement,

[F(1, 38) = 1.53, p = .22, g2
p = .04], indicating that improvement

in the training task did not predict transfer.

Discussion

Although training on a change detection task improved

performance, with participants requiring less encoding time for

accurate change detection, that improvement did not transfer to a

structurally similar one-shot change detection task or to a flicker

change detection task. Both the training group and the control

group improved when they completed the transfer tasks a second

time, but they improved to equal extents. Change detection

training did not improve change detection on other tasks, either in

a similar one-shot change detection task with different stimuli or in

a flicker change detection task with real-world images.

Given the lack of differential performance for the training group

and the control group, performance improvements on the transfer

tasks presumably resulted from practice on those tasks rather than

transfer of training. This lack of transfer is consistent with the

perceptual training literature in which training often improves

trained-task performance, but transfer tends to be limited and

narrow [11,13,16]. The one-shot change detection transfer task is

structurally the same as our training task, differing only in timing

and the use of simpler, novel objects (colored bars instead of cars,

signs, etc.). The lack of transfer from our object change detection

task to another one-shot change detection task suggests that

training effects were limited to the trained objects and did not

enhance the underlying change detection processes or other

mechanisms and strategies that would aid performance of the

same task with different objects. That is, the improvements during

training (i.e. reductions in encoding time) likely resulted from

increased familiarity with the trained stimuli rather than from an

improvement in underlying change detection ability.

Though the trained stimulus set was relatively large, observers

can differentiate between studied and altered objects, even when

asked to remember hundreds of objects [34,35]. In the present

study, training improvements resulted from increased familiarity

with the trained objects. Importantly, within the parameters of the

training task, much of the improvement in encoding time occurred

within the first three sessions (Figure 4), suggesting that partici-

pants became familiar with the objects in relatively little time (,3–

4 hours). Increased familiarity with the trained stimuli would not,

however, improve the ability to detect changes in any untrained

stimuli, such as those used in the one-shot change detection

transfer task. Our results suggest that training would be similarly

specific for other sets of objects (e.g. colored bars, detailed

pictures). This stimulus specificity is consistent with evidence that

expert observers fail to outperform non-experts when the images

are unrelated to their domain of expertise [4,5]. Our change

detection training participants likely became experts in rapidly

encoding the trained stimuli, not necessarily in detecting changes.

However, it is unknown whether training would transfer to

untrained configurations of the same objects (e.g. rotated trained

objects).

One caveat to our evidence for limited transfer comes from the

nature of our training procedure. We adaptively manipulated

encoding time, but several other processes (e.g. memory,

comparison) contribute to successful change detection [36], and

training those processes might lead to broader improvements in

change detection ability. While it is likely that improved encoding

was primarily responsible for improvements on the training task,

we were unable to assess whether changes in other processes

involved in change detection contributed to improvement in the

training task. Future research could adaptively adjust other

components of the change detection task (e.g. the blank duration)

to see whether training those aspects of performance would lead to

broader transfer.
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